Übung zum Carnot-Kreislauf

- 1. Bei einem thermodynamischen Kreisprozeß einer ideal arbeitenden Carnot-Maschine wird bei jedem Kreislauf dem Wärmespeicher A die Wärmemenge Q_1 = -2000J entnommen und dem Wärmespeicher B die Wärmemenge Q_2 = 1600J zugeführt. Die Temperatur des Speichers B beträgt 35°C. Die Temperatur des Speichers A ist höher als die von Speicher B.
- a) Welche Temperatur hat Speicher A? (112°C)
- b) Welchen Wirkungsgrad hat diese Maschine? (20%)
- c) Auf welche Temperatur müßte man Speicher A bringen, wenn bei gleicher Temperatur in Speicher B $35^{\circ}C$ der doppelte Wirkungsgrad erreicht werden soll? (240°C)
- 2. In einer idealen Carnot-Maschine befindet sich ein Gas der Stoffmenge n=0,12mol. In zwei Wärmebehältern betragen die Temperaturen T_1 = 560K und T_2 = 280K.
- a) Der Ausgangsdruck sei p_1 = 8,2·10⁵Pa und es herrsche T_1 . Von diesem Zustand aus wird das Gas isotherm ausgedehnt, bis der Druck auf p_2 =3,3·10⁵ Pa abgesunken ist. Berechne das Ausgangsvolumen V_1 und das Endvolumen V_2 .

 $(6,81\cdot10^{-4}\text{m}^3; 1,69\cdot10^{-3}\text{m}^3)$

- b) Welche Arbeit W verrichtet das Gas und welche Wärme wird zugeführt? (508J)
- 3) Ein Wohnhaus am See soll mit Hilfe einer Wärmepumpe beheizt werden. Die WP entnimmt dem See Wärme der Temperatur T_k =4°C und gibt sie an einen Heizkörper bei 54°C ab.
- a) Berechne den Wirkungsgrad und die Leistungszahl.
- b) Zur Erwärmung des Hauses muß in jeder Stunde die Wärmemenge 3,5.10⁷J abgegeben werden. Welche Leistung muß die WP erbringen?