

Berechnen eines unbekannten Widerstandes

 U_g = 50 Ω ; I_g =2A; R_1 =8 Ω , R_2 =2 Ω R_3 =20 Ω ; R_4 =30 Ω

Die Grösse von R_x ist gesucht:

Man faßt zuerst die Reihenschaltungen zusammen: R_1 und R_2 ; dann R_3 und R_4 , danach die Parallelschaltung der beiden Reihenschaltungen zu $R_{12,34}$. $R_{12,34}$ ist zu R_x in Reihe geschaltet.

$$R_{g} = \frac{U_{g}}{I_{g}} = \frac{50V}{2A} = 25\Omega$$

$$R_{1} + R_{2} = 8\Omega + 2\Omega = 10\Omega$$

$$R_{3} + R_{4} = 20\Omega + 30\Omega = 50\Omega$$

$$\frac{1}{R_{12,34}} = \frac{1}{R_{12}} + \frac{1}{R_{34}} = \frac{1}{10\Omega} + \frac{1}{50\Omega}$$

$$R_{12,34} = 8,333\Omega$$

$$R_{g} = R_{x} + R_{12,34} \Rightarrow R_{x} = R_{g} - R_{12,34} = 25\Omega - 8,333\Omega$$

$$R_{x} = 16,6666\Omega$$